金沙集团1991cc入口(中国)官方网站

李小伟

  • 政治面貌

    中共党员

  • 职称

    教授、博士生导师

  • 职务

    数据科学研究中心主任

  • 所在系所

    计算机应用技术研究所

  • 邮箱

    lixwei@lzu.edu.cn

  • 办公地址

    飞云楼513

学习经历

  1998.09-2002.07,兰州大学,计算机科学系, 工学学士
  2002.09-2005.07,兰州大学, 计算机科学与技术,工学硕士
  2009.09-2015.06, 兰州大学, 计算机科学与技术,工学博士

工作经历

  2007.04-2013.04,金沙集团1991cc入口,讲师
  2013.05-2018.04,金沙集团1991cc入口,副教授
  2018.05-至今,金沙集团1991cc入口,教授

教学情况

  主讲本科生课程:
  《数据库技术》,《Web数据库技术》, 《C语言程序设计》, 《汇编语言》等

指导研究生情况

  2014年以来指导博士、硕士研究生30余人次

研究方向

  研究领域为数据挖掘、生物医学数据处理、大数据等。当前研究主要为情感障碍人群脑电信号、眼动信号等多模态数据分析处理。

招生专业

  计算机科学与技术,计算机应用技术等相关专业

项目成果

近五年主持或参加科研项目(课题)及人才计划项目情况:

1. 自然科学基金面上项目,62372216,基于脑电信号的抑郁识别关键技术研究;

2. 国家科技部,科技创新2030--“脑科学与类脑研究”重点项目, 2022ZD0208500,新型无创脑机接口:理论、技术与应用示范;

3. 甘肃省科技厅, 甘肃省自然科学基金重点项目,22JR5RA410, 基于脑电源定位的抑郁症患者脑网络模型研究;

4. 自然科学基金重点项目, 61632014, 注意神经机制的可计算模型研究;

5. 科技部, 国家“973”计划, 2014CB744600, 基于生物、心理多模态信息的潜在抑郁风险预警理论与生物传感关键技术研究。

发表论文及专著

近期发表论文:

1、Shao, X., Kong, W., Sun, S., Li, N., Li, X., & Hu, B. Analysis of functional connectivity in depression based on a weighted hyper-network method[J]. Journal of Neural Engineering.2023,20(1):016023. 

2、Xuexiao Shao, Danfeng Yan, Wenwen Kong, Shuting Sun, Mei Liao, Wenwen Ou,Yan Zhang, Fang Zheng, Xiaowei Li, Lingjiang Li, Bin Hu. Brain function changes reveal rapid antidepressant effects of nitrous oxide for treatment-resistant depression: Evidence from task-state EEG. Psychiatry Research.2023, 322: 115072. 

3、S. Sun et al., Clustering-Fusion Feature Selection Method in Identifying Major Depressive Disorder Based on Resting State EEG Signals, in IEEE Journal of Biomedical and Health Informatics, doi: 10.1109/JBHI.2023.3269814.

4、J. Zhu et al., Mutual Information Based Fusion Model (MIBFM): Mild Depression Recognition Using EEG and Pupil Area Signals, in IEEE Transactions on Affective Computing, doi: 10.1109/TAFFC.2022.3171782. 

5、Li, J., Chen, J., Zhang, Z., Hao, Y., Li, X., and Hu, B.A thresholding method based on society modularity and role division for functional connectivity analysis[J].Journal of Neural Engineering. DOI:10.1088/1741-2552/ac8dc3. 

6、Zhu J, Wei S, Xie X, et al. Content-based multiple evidence fusion on EEG and eye movements for mild depression recognition [J]. Computer Methods and Programs in Biomedicine, 2022, 226: 107100.

7、X. Lin,W. Kong,J. Li,et al. Aberrant Static and Dynamic Functional Brain Network in Depression Based on EEG Source Localization[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2022,PP(99):1-14. 

8、H. Chen et al., "Personal-Zscore: Eliminating Individual Difference for EEG-based Cross-Subject Emotion Recognition," in IEEE Transactions on Affective Computing, doi: 10.1109/TAFFC.2021.3137857. 

9、J. Li et al., "Altered Brain Dynamics and Their Ability for Major Depression Detection using EEG Microstates Analysis," in IEEE Transactions on Affective Computing, doi: 10.1109/TAFFC.2021.3139104. 

10、Li JX , Chen JH , Kong WW, Li XW, Hu B. Abnormal core functional connectivity on the pathology of MDD and antidepressant treatment: a systematic review[J]. Journal of Affective Disorders. 2021, doi:https://doi.org/10.1016/j.jad.2021.09.074.

11、Li J , Hao Y , Zhang W , et al. Effective connectivity based EEG revealing the inhibitory deficits for distracting stimuli in major depression disorders[J]. IEEE Transactions on Affective Computing, 2021, PP(99):1-1. 

对外合作

荣誉获奖

社会工作

其他信息

XML 地图